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A B S T R A C T

Recognition of texts in scenes is one of the most important tasks in many computer vision applications. Though different
scene text recognition techniques have been developed, scene text recognition under a generic condition is still a very
open and challenging research problem. One major factor that defers the advance in this research area is character touch-
ing, where many characters in scene images are heavily touched with each other and cannot be segmented for recogni-
tion. In this paper, we proposed a novel scene text recognition technique that performs word level recognition without
character segmentation. Our proposed technique has three advantages. First it converts each word image into a sequen-
tial signal for the scene text recognition. Second, it adapts the recurrent neural network (RNN) with Long Short Term
Memory (LSTM), the technique that has been widely used for handwriting recognition in recent years. Third, by integrat-
ing multiple RNNs, an accurate recognition system is developed which is capable of recognizing scene texts including
those heavily touched ones without character segmentation. Extensive experiments have been conducted over a number
of datasets including several ICDAR Robust Reading datasets and Google Street View dataset. Experiments show that
the proposed technique is capable of recognizing texts in scenes accurately.
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1. Introduction

Text recognition in scenes is one of the most important research
areas in computer vision and it has been studied for many years with
different successful applications. Due to the rapid development of mo-
bile sensors and internet technology, a huge amount of digital images
are produced every day. Textual regions as one of the most informa-
tive regions in scene images need to be interpreted properly and auto-
matically to make these images more accessible and valuable.

The Robust Reading Competitions [1,2] held under the framework
of the International Conference on Document Analysis and Recogni-
tion(ICDAR) 2011 & 2013 show recent development on this research
topic. One of tasks in these competitions is to recognize cropped
word images which have little constraints in terms of text fonts, en-
vironmental lighting, image background, etc. A number of recogni-
tion systems have been reported and evaluated over the benchmarking
datasets and the recognition accuracy has been lifted from the initial
around 50% to the recent around 80% over the last decades.

Scene text recognition has been investigated in two typical ap-
proaches. The first is the traditional OCR (Optical Character Recog-
nition) approach, which first segments text pixels from the image
background and then applies some existing OCR engine to recog-
nize the segmented characters. Another is feature based approach,
which extracts various visual features such as HOG (histograms of ori-
ented gradients) and SIFT (scale-invariant feature transform) to train a
multi-class character classification model.

⁎ Corresponding author.
Email addresses: subl@i2r.a-star.edu.sg (B. Su); slu@i2r.a-star.edu.sg (S. Lu)

The traditional OCR techniques have been developed for decades
and achieved great success in different commercial systems. On the
other hand, most of them are designed for the scanned document texts
which are usually well formatted and have a good image quality. They
often fail to produce good results when applied for texts in scenes,
where characters have little constraints in term of text fonts, environ-
mental lighting, image background, etc. as illustrated in Figs. 1 (a)
and (e). Several systems [3–5] have been reported to extract a clean
character regions before feeding to OCR engines but they usually suf-
fer from two typical constraints. First, text segmentation in scene im-
ages is a non-trivial problem due to uneven illumination, blur, low text
background contrast, etc., as illustrated in Figs. 1 (e), and (g). Second,
texts in scene images often have perspective distortion and special
fonts, which cannot be recognized by traditional OCR engines prop-
erly as illustration in Figs. 1 (c) and (h). Different image restoration
techniques [6,7] are often required to produce satisfactory recognition
results.

The other approach exploits the object recognition techniques that
have been extensively studied in recent years. In particular, these tech-
niques can be categorised into two groups, namely character level
recognition methods [9–16] and word level recognition methods
[17–19]. The character level recognition methods first recognize each
character of the word image, and then group all the recognized char-
acters into a word string. Various visual features such as HOG
[12,13,20], and part based tree structure [14] have been exploited
to represent characters in scenes. The convolutional neural network
(CNN) has also been widely used as the character classifier in re-
cent years [9–11,16]. Besides, different clustering strategies have been
proposed to group the recognized characters into a word string such
as pictorial structure [13], conditional random field [12,14], HMM
[9], N-gram model [10,16], etc. On the other hand, segmenting a

http://dx.doi.org/10.1016/j.patcog.2016.10.016
0031-3203/© 2016 Published by Elsevier Ltd.
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Fig. 1. Four text image examples and their corresponding text segmentation ground truth that are taken from the benchmarking word image dataset [8] (From up to down, the text
images become more difficult to recognize). The OCR results obtained using Abbyy Fine Reader 10.0 are (a: r), (b: fish), (c: –), (d: Draoon), (e: –), (f: –), (g: –), (h: –), where ‘–’
denotes no results produced.

word images into character images is often a very challenging task and
sometime even impossible as illustrated in Fig. 2 [21].

The word-level recognition treats each word image as a whole
and performs recognition without the character segmentation. Dif-
ferent techniques [17–19] have been proposed in recent years and
very promising results have been obtained. In particular, the discrete
wavelet transform (DWT) method [17] tries to find smallest distance
between the word images and the font-renderings words within a lex-
icon. The attribute embedding method [18] creates a joint embedding
space for word images and the word strings within a lexicon and finds
a close match. The Whole Word Deep CNN method [19] treats each
possible word in the lexicon as an output label of the trained CNN.
The common limitation of these methods is that they all require an ex-
plicit lexicon which is costly and often inaccessible under many sce-
narios.

In [23], we proposed a scene text recognition technique that treats
a word image as an unsegmented sequence. The major advantage is
that it does not require an explicit lexicon (e.g. all the possible words
are listed) and can perform the word-level recognition without lexicon
or with an implicit lexicon (e.g. some constraints on the output word
string) which is much easier to construct. Input images are normalized
into the same height and retain the aspect ratio before the feature ex-
traction. The column feature is extracted by using a fixed sized win-
dow. The major limitation of [23] is that the column features with a
fixed window size cannot capture characteristics of different charac-
ters concurrently. The reason is that the aspect ratio of different char-
acters such as ‘i′, ‘I′, ‘W′, and ‘M′ is very different, and so the same
character in different fonts.

The new model as presented in this paper addresses the limitation
and improves the word recognition accuracy significantly. In particu-
lar, we used image patches of different sizes to handle the large char

acter aspect ratio variation and this approach also captures much richer
characteristics of texts. Generally speaking, a small image patch can
capture the stroke-level features as well as those thin characters such
as ‘l′ and ‘i′, whereas a larger image patch is able to capture the char-
acter/intra-character level features as well as those wide characters
such as ‘M′ and ‘W′. In addition, the new model implemented mul-
tiple recurrent neural networks (RNNs) to combine column features
from patches of different window sizes. Experiments show that the
new model is robust and able to recognize various challenging word
images correctly.

The contributions can be summarized as follows:

• First, we design an effective way of converting a word image into a
sequential signal so that RNN techniques, which have been success-
fully used in speech processing and handwriting recognition areas,
can be introduced and applied. We adapt RNN for the recognition of
texts in scenes, and design a segmentation-free scene word recogni-
tion system that obtains superior word recognition accuracy.

• Second, we propose a new ensembling technique that combines out-
puts from two RNNs for better recognition results. The proposed en-
sembling technique is generic and can be easily extent to ensemble
other models for better performance.

• Third, compared with some systems [10,11] that rely heavily on cer-
tain local dataset (which are not available to the public), our system
makes use of several publicly available datasets in training stage,
hence providing a baseline for easier benchmarking of the ensuing
scene text recognition techniques.

• Last but not least, compared with the character based recognition
methods, our system only require word level annotation of text for
training, which could reduce the effort on generating character level
ground truth, as well as character level segmentation greatly.

Fig. 2. Word image examples taken from the recent Public Datasets [22,1,2]. All the words in the images are correctly recognized by our proposed method.
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2. Proposed method

The proposed technique consists of three key components, includ-
ing sequential feature generation which converts a word image into a
sequential feature, RNN model training where two multi-layer RNNs
are trained together with LSTM [24] and connectionist temporal clas-
sification (CTC) [25], and an ensembling technique that combines out-
puts of multiple RNNs to produce improved word recognition accu-
racy.

The overall system consists of three components. In the first com-
ponent, a word image is converted into sequences of column feature
based on HOG features with different parameter settings. In total, we
extracted two feature sets for training. In the second component, two
multi layer recurrent neural network (RNN) model with bidirectional
Long Short-Term Memory (LSTM) [24] is trained to classify the two
sets of sequential data. After that, the score of each word in the lexi-
con is calculated separately for each RNN model using connectionist
temporal classification (CTC) [25] technique. Finally the scores of dif-
ferent networks are combined to generate the final output in the third
component.

2.1. Word to sequential feature conversion

The RNN model takes a feature vector as input at each step and
it is widely used for sequential data classification. For example, the
acoustic feature is extracted at each time frame when RNN is applied
to voice data for speech recognition. Similarly, we can extract visual
features from each column of a word image and feed them into RNN
for word recognition. This idea is straightforward and has been applied
for handwriting recognition [25] with promising results.

On the other hand, the RNN cannot be directly applied for scene
text recognition because text strokes in scenes often cannot be seg-
mented easily due to the high complexity of the scene image back-
ground. With good segmentation, very limited meaningful informa-
tion can be extracted if we simply take one column of image pixels
for processing. Nevertheless, more meaning features can be extracted
from a column of image patches instead of a column of image pixels.

Different feature descriptors such as HOG and dense SIFT can be
extracted from each image patch for the object recognition task. For
the recognition of characters/words in scenes, HOG performs much
better than dense SIFT because of the special characteristic of the text
images. In particular, text strokes in scene images usually have strong
gradient across their boundary. HoG can reliably capture such gradi-
ent information and so the shape of text strokes which is critical for

the scene text recognition. Dense SIFT instead extracts descriptors in
constant steps, where the text stroke information can be easily missed.
We compare HOG and dense SIFT through different experiments to
be described in Section 3.4.

In particular, the HOG features are first extracted by resizing the
input images to the same height to obtain a column feature with the
same length. The input images are then convolutionally partitioned
into patches with step size 1.

The HOG feature is normalized for each image patch, and those
extracted from the same column are then linked together. An average
pooling is further applied to incorporate information of neighbouring
blocks by averaging the HOG feature vectors within a neighbouring
window. A column feature is finally determined by concatenating the
averaged HOG feature vectors at the same column, so the vertical po-
sitioning information of the text is preserved in the sequential feature.
Fig. 3 illustrates the overall feature extraction process using 3×3 im-
age patch. We also tested max pooling in our experiments. Our test
shows that average pooling scheme performs slightly better, largely
due to the better suppression of the background noise by the average
pooling. To ensure that all the column features have the same length,
the input word image needs to be normalized to be of the same height
M beforehand. Furthermore, the patch size W and neighbouring win-
dows size T can be set empirically, and will be discussed in the exper-
iment section.

2.2. Recurrent neural network modeling

RNN is a special neural network that has been used for handling se-
quential data. The RNN aims to predict the label of current time stamp
with the contextual information of past time stamps. It is a powerful
classification model but not widely used in the literature. The major
reason is that it often requires a long training process as the error path
integral decays exponentially along the sequence [26].

The long short-term memory (LSTM) model [26] was proposed to
solve this problem as illustrated in Fig. 4. In LSTM, an internal mem-
ory structure is used to replace the nodes in the traditional RNN, where
the output activation of the network at time t+1 is determined by the
input data of the network at time t+1 and the internal memory stored
in the network at time t. The learning procedure under LSTM there-
fore becomes local and constant. Furthermore, a forget gate is added
to determine whether to reset the stored memory [27]. This strategy
helps the RNN to remember contextual information and withdraw er-
rors during learning. The memory update and output activation proce-
dure of RNN can be formulated in Eq. (1) as follows:

Fig. 3. An illustration of the HOG column feature extraction process: The 5 by 7 rectangle grid is used to represent an input image, where each cell denotes an image pixel. The
feature is extracted based on 3 by 3 image patch to form a HOG feature matrix represented by a 3 by 5 grid, each cell of which denotes a HOG feature vector. Finally, the average
pooling strategy is applied column by column to construct the HOG column feature.
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Fig. 4. Illustration of Recurrent Neural Network, where Wo, Wf and Wi stand for the output gate, forget gate and input gate, respectively.

where denote the stored memory, input data, and out-
put activation of the network at time t+1, respectively. Functions
and refer to the sigmoid function that squashes the data. de-
notes the weight parameters of the network. In addition, the first term

is used to control whether to withdraw previous stored
memory St.

Bidirectional LSTM is further proposed to predict the current label
with past and future contextual information by processing the input se-
quence in two directions (i.e. from beginning to end and, from end to
beginning).

CTC [25] is then applied to the output layer of RNN to label the
unsegmented data. In our system, a training sample can be viewed as
a pair of input column feature and a target word string . The
objective function of CTC is then defined as follows:

where denotes the whole training set and denotes the con-
ditional probability of word given a sequence of column feature C.
The target is to minimize , which is equivalent to maximize the con-
ditional probability .

The output path π of the RNN output activations has the same
length of the input sequence C. It is clear that the neighbouring col-
umn feature vectors might represent the same character. In addition,
some column feature vectors may not represent any labels, an addi-
tional ’blank’ output label is added into the RNN output layer. The
repeating labels and empty labels also need to be removed to map to

the target word . For example,
can be mapped to (a,b), where denotes the empty label. So the

is defined as follows:

where V denotes the operator that translates the output path π to tar-
get word . It is worth to note that the translation process V is not
unique. refers to the conditional probability of output path π
given input sequence C, which is defined as follows:

where L denotes the length of the output path and πt denotes label of
output path π at time t. The term yt denotes the network output of RNN
at time t, which can be interpreted as the probability distribution of the
output labels at time t. Therefore denotes the probability of πt at
time t.

The CTC forward backward algorithm [25] is then applied to cal-
culate . The RNN network is trained by back-propagating the
gradient through the output layer based on the objective function as
defined in Eq. (2). Once the RNN is trained, it can be used to con-
vert a sequential feature vector into a probability matrix. In particular,
the RNN will produce a L×G probability matrix Y given an input se-
quence of column feature vector, where L denotes the length of the se-
quence, and G denotes the number of possible output labels, where the
empty label is not included. Fig. 5 shows an example of probability
matrix. Each entry of Y can be interpreted as the probability of a label
at a time step. Hence when the lexicon is unavailable, the recognition
result can be derived by combining all the labels with the highest prob-
ability of each row.

(1a)

(1b)

(2)

(3)

(4)
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Fig. 5. The output probability matrix of an input word image ‘Distributed’. The input word image is first converted into column features. Each frame (column) is fed as the input
of the RNNs. The RNNs will generate the output distribution of all the possible labels for each frame. The brightest spot of each row denotes the corresponding label has higher
probability.

Compared with the traditional HMM model that generates obser-
vations based only on the current hidden state, this RNN approach in-
corporates the context information including the historical states by
using the LSTM structure [25]. We also conduct experiments to com-
pare the performance of HMM and RNN to be discussed in Section
3.4. In addition, the proposed approach does not require explicit label-
ing of every single column vector of the input sequence. This is very
important to the scene text recognition because characters in scenes
are often connected, broken, or blurred where the explicit labeling is
sometimes nearly an impossible task as illustrated in Fig. 2.

2.3. Ensembling RNNs with lexicon

With a probability matrix Y and a lexicon consisting of a set of
possible words, the word recognition can be formulated as searching
for the best match word w* with a highest score. We first calculate a
score of each possible word as follows:

where is the conditional probability of word w given Y. A di-
rect graph can be constructed for the word w so that each node repre-
sents a possible label of w. In other words, we need to sum over all the
possible paths that can form a word w on the probability matrix Y to
calculate the score of a word w.

A new word wi can be generated by adding some blank interval
into the beginning and ending of w as well as the neighbouring labels
of w, where the blank interval denotes the empty label. The length of
wi is , where denotes the length of w. A new prob-
ability matrix can thus be formed, where denotes the length
of wi and L denotes the length of the input sequence. denotes
the probability of label wi

m at time t, which can be determined by the
probability matrix Y. Each path from to denotes a
possible output π of word w, where the probability can be calculated
using Eq. (4) as illustrated in Fig. 6.

The problem thus changes to the score accumulation along all the
possible paths in . It can be solved using dynamic programming. The
computational complexity of this algorithm is .

Fig. 6. An illustration of calculation of word score. Take a simple string ‘abc’ as an ex-
ample, we first form a m by n matrix, where m denotes the length of string after inserting
empty label, n denotes the size of column features. Each cell (i,j) of the matrix denotes
the probability of a label i at frame j. The blue arrows show all the possible paths from
start to end, while the red arrow denotes a specific path.

If we extract several feature sets with different scales using differ-
ent parameter settings, there will be more that one trained RNN mod-
els. Each RNN model will assign a score to every possible words in
the lexicon . So we can combine the scores given by the two models
to obtain the best match word w* as follows:

where scorew
i denotes the assigned score to word w by the ith RNN

model as defined in Eq. (5), αi denotes the weight of each RNN mod-
els, which can be determined based its recognition accuracy on the
validation dataset as defined in Eq. (7) below.

where acci denotes the classification accuracy of RNN model i on

(5)

(6)

(7)
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the validating dataset. Basically, the classifier with higher accuracy
will be given higher weight.

3. Experiments and discussion

3.1. Experimental protocol

The proposed method has been tested on four datasets, including
1) three ICDAR Robust Reading Competition datasets (ICDAR 2003,
ICDAR 2011 and ICDAR 2013) [22,1,2] that consist of scene images
captured in different environments, and 2) Google Street View Text
dataset (SVT) [13] that mainly consists of images of signboards and
shops’ names in outdoor environments. Another three datasets are also
included for training: ICDAR Born Digital Image Dataset (BDI) [28],
Sign Recognition Dataset (SRD) [29] and IIIT5K Dataset [30].

Table 1 shows more details of all these datasets. Since some im-
ages appear concurrently in the ICDAR 2003, ICDAR 2011 and IC-
DAR 2013 datasets, we use only the training images within these
three datasets in conjuncted with training images from the other three
datasets (i.e. BDI, SRD and IIIT5K) to train a model when testing on
the three ICDAR test datasets. For the SVT dataset, we take all the
images from other datasets (BDI, SRD, IIIT5K and ICDAR 2003, IC-
DAR 2011, and ICDAR 2013) together with the SVT train images to
train a model and test on the SVT test images. The motivation is to use
the publicly available datasets only, so that the ensuing models can be
benchmarked in a fair way.

Each image of the dataset contains one word. Our proposed method
is evaluated based on the word level recognition accuracy as defined
as follows:

A word image is considered as correctly recognized only when the
recognized word string is the same as the word shown in the image.
Characters in a word can be ‘A-Z′, ‘a-z′, ‘0–9′ and all other special
characters (‘+’,‘&’, ‘.’, etc).

3.2. Experiment configuration

In the proposed system, we use two sets of parameters as described
in Section 2.2:

• Feature Set 32: all cropped word images are normalized to be of the
same height, i.e., M=32. The patch size W, the HOG bin number,
and the averaging window size T are set to 8, 9, and 5, respectively.

• Feature Set 64: all cropped word images are normalized to be of the
same height, i.e., M=64. The patch size W, the HOG bin number,
and the averaging window size T are set to 9, 9, and 7, respectively.

We have also tested feature set sizes 16 and 128 when the image
size is normalized to 16 and 128 pixel high, respectively. The good

Table 1
Information of experimental datasets.

Datasets # of Training Images # of Testing Images

ICDAR 2003 [22] 1156 1110
ICDAR 2011 [1] 848 1189
ICDAR 2013 [2] 848 1095
SVT [13] 257 647
IIIT5K 5000 –
BDI 918 –
SRD 215 –

feature set size actually depends heavily on the size of images used
for training and testing. If the image is small, using a small feature set
size could lose textual information and accordingly affects the recog-
nition performance, e.g. the recognition accuracy of feature set 16 on
ICDAR03 dataset is only 19%. On the other hand, using a large feature
set size, e.g. feature set 128 wont improve the recognition accuracy
much but increases the computation costs significantly. We therefore
choose feature Set 32 and feature set 64 in our designed system.

For RNN, the number of input cells is the same as the length of the
extracted column feature at 40. The output layer has 64 cells includ-
ing 62 for characters ([a…z,A…Z,0…9]), one label for special char-
acters ([+,&,$,…]), and one for empty label. The RNN uses 5 hid-
den layers that have 60, 80, 100, 120 and 140 cells, respectively. We
have also tested other hidden layers sizes but the recognition perfor-
mance is quite similar. On the other hand, the number of hidden lay-
ers does affect the recognition performance. In particular, the accuracy
drops from 89–82% on the ICDAR03 dataset when the layer number
reduces from 5 to 3. Increasing the layer number above 5 instead re-
quires much more computation costs and the trained model also tends
to be over-fitted. We therefore choose the current network structure.

3.3. Experimental results on public datasets

We compare our proposed method with several state-of-the-art
techniques as shown in Table 2. The compared techniques can be
grouped into three categories including 1) Segmentation based tech-
niques (markov random field method (MRF) [3], inverse rendering
method (IR) [5], nonlinear color enhancement method (NESP) [4])
that segment the text regions from the word images, 2) Charac-
ter level recognition techniques (HMM Maxout model (HMM) [9],
HOG based conditional random field method (HOGCRF) [12], CNN
model (CNN) [11], Part Based Tree structure method (PBS) [14] 1,
Clustering sub-patches of characters method (Strokelets) [15], Pho-
toOCR [10] and Deep CNN Model (DCNN) [16]) that recognize word
images through segmentation and integration of character recognition
results and 3) Word level recognition techniques (Embedded attrib-
utes (AE) [18], Dynamic time warping (DTW) [17], and Whole Word
Deep CNN Model(WWDCNN) [19]) that treat each word images as a
whole without character segmentation.

To make a fair comparison, we evaluate recognition accuracy on
testing data with a lexicon created from all the words in the test set
(as denoted by ICDAR03(FULL) and ICDAR11(FULL) in Table 2,
as well as with lexicon consisting of 50 random words from the test
set (as denoted by ICDAR03(50) and ICDAR11(50) in Table 2 as
performed in [17,32,14]. For the SVT dataset, we directly adopt the
50-word lexicon as provided in [13].

Table 2 shows word recognition accuracy of the proposed tech-
nique and the compared techniques on ICDAR 2003, ICDAR 2011
and SVT datasets, respectively. Text segmentation methods (MRF [3],
IR [5], and NESP [4]) produce lower recognition accuracy than other
methods because robust and accurate scene text segmentation is a very
challenging task. In addition, the CNN approach performs the best
among all the character level recognition methods [9,16,11]. To train
a robust CNN character classifier, a large amount of character level
training data need to be labeled and synthetic character data is often
needed as well.

For the word level recognition methods, our proposed method pro-
duces better recognition results compared with the DTW and AE

1 The accuracy is obtained on 49 classes.

(8)
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methods. The WWDCNN method performs the best which can be
largely attributed to the huge training dataset including 9 million syn-
thetic word images. On the other hand, the deep network model in
the WWDCNN method needs to be updated if the lexicon has been
changed. Additionally, the WWDCNN method cannot work properly
when the lexicon is implicit and the searching space is huge.

Compared with the CNN architecture, our proposed model can per-
form the word level recognition without requiring the lexicon because
it treats each input word image as a sequential signal. Additionally,
the character labels are learnt and recognized implicitly during the
training and evaluation stages. In addition, to show that the proposed
model can perform much better with augmented data, we also train a
new text recognition model by adding in a certain part of the newly
publicly available data provided by [31] which consists of lots of syn-
thetic text images. Due to the constraints of the computational power,
we only incorporate a subset of the dataset with 10,000 randomly se-
lected text images (out of 9 million images available) . As the last row
of Table 2 shows, the recognition accuracy is improved with a small
subset of the synthetic data compared with that shown in the second
last row where the augmented data in [31] is not used.

Based on our study, our proposed model works best when the in-
put word images are more or less horizontal. In fact, one major fail-
ure source is due to the severe perspective distortion where words are
captured in arbitrary orientations. This limitation could be relieved by
perspective/affine rectification which we will investigate in our future
work.

In addition, our proposed method obtains a superior word recogni-
tion accuracy of 89% for SVT data set as shown in Table 2. The supe-
rior performance can be explained by the character-segmentation-free
characteristic of our proposed method, because many word images
in the SVT dataset are difficult to segment compared with word im-
ages in ICDAR datasets as illustrated in Fig. 7. That is why almost
all the state-of-the-art techniques perform worse on the SVT dataset
as compared with the three ICDAR datasets. At the same time, the
superior performance of our proposed technique can also be attrib-
uted to the ensembling of the two sets of discriminative visual fea-
tures, because texts within the SVT dataset often have very different
fonts and sizes. The PhotoOCR [10] and WWDCNN [19] also report
higher word recognition accuracies (90% and 95% respectively) . As
a comparison, our proposed method achieves similar performance and
is better in terms of training data size, training time, and computational
costs.

Furthermore, we apply our proposed method on the recent ICDAR
2013 Rubust Text Reading Competition dataset [2]2, where 22 al-
gorithms are submitted from 13 research groups. The winning Pho-
toOCR method [10] makes use of a large multi-layer deep neural net-
work and obtains 83% accuracy on the testing dataset. The WWD-
CNN [19] also achieves very promising recognition performance
(91%) as shown in Table 3. Note that PhotoOCR method does not
use lexicon but uses a huge amount of training data including more
than 5 million word images. The WWDCNN method also takes ad-
vantage of the 9 million synthetic text images. Therefore, a large
amount of training data can help to train a better model but the ac-
quisition is often costly and even infeasible under many practical
situations. Alternatively, it is often more approachable to leverage
on some implicit or explicit lexicon to reduce the searching space
and improve the recognition accuracy. As a comparison, our pro-
posed method achieved 90% recognition accuracy when a lexicon
with around 1000 words is used as illustrated in the last row of Table
3. The accuracy of our proposed technique without using a lexicon

2 http://dag.cvc.uab.es/icdar2013competition

drops to 76%, which is still much higher than other participating meth-
ods of the competition as shown in Table 3. The accuracies of our pro-
posed technique on the ICDAR 03, ICDAR 11 and SVT datasets also
drop to 72%, 69% and 70%, respectively, when no lexicon is used.

As Tables 2, 3 show, our proposed method does not significantly
outperform some state-of-the-art techniques on some dataset. On the
other hand, one advantage of our proposed method (beyond the ac-
curacy) is that it is trained on word-level instead of character-level
(the annotation is much more time consuming) labeled data. In addi-
tion, our method is trained on publicly available datasets which tar-
gets to form a baseline for the benchmarking of the ensuing works. As
a comparison, many compared methods, e.g. [19] used a much larger
amount of training images which are not publicly available.

Last, our system is implemented on Ubuntu 13.10 with 16 GB
RAM and Intel 64 bit 3.40 GHz CPU. The training process takes about
1 h on a training set with about 3000 word images. The average time
for recognizing a cropped word image is about one second. This speed
is comparable with the state-of-the-art techniques, such as PhotoOCR
[10], which takes around 1.4 s to recognize a cropped word image. It
can be further improved through code optimization and hardware ac-
celeration.

3.4. Discussion

In this subsection, we conduct several experiments to compare the
performance of different features and classifiers such as dense SIFT
vs HOG and HMM vs RNN. The dense SIFT feature is extracted by
using VLFeat3 with several key parameters set as follows. First, all
cropped word images are normalized to the same height 64 pixels.
The step size and the bin size (scale) of dense SIFT are set at 2 and
8, respectively. The averaging window size is set at 4. The descriptor
length is therefore 128 and the size of column feature is 640.

The HMM is implemented by using Kaldi.4 The models are HMMs
for each of the 63 labels. Each HMM has three emitting states and
each state is modeled as a Gaussian Mixure Model (GMM). Exper-
imental results are shown in Table 4. It can be observed that the
HOG+RNN approach performs much better than the other two ap-
proaches clearly. Compared with the dense SIFT, the HOG feature is
more suitable for the scene text recognition task as it captures textual
shape information more reliably. The RNN with LSTM also outper-
forms the traditional HMM method not only for this scene text recog-
nition task but also for the handwriting recognition task [25].

We also investigate the correlation between the lexicon size and
the word recognition accuracy. Fig. 8 shows word recognition ac-
curacy of our proposed method over the three ICDAR datasets. As
shown in Fig. 8, four lexicon sizes are tested that consist of 5, 10, 20,
and 50 words, respectively. The word recognition accuracy keeps im-
proving when the lexicon size becomes smaller.

4. Conclusion

Word recognition under unconstrained conditions is a difficult task
and has attracted increasing research interest in recent years. Many
methods have been reported to address this problem but there is still a
big gap for automatic machine reading of texts in natural scenes. This
paper presents a novel scene text recognition system that is based on
RNN modeling and ensembling.

3 http://www.vlfeat.org/
4 http://kaldi-asr.org/
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Fig. 7. Some sample images taken from SVT dataset: The text in these images are blurred and heavily touched, where character segmentation is almost an impossible task.

Table 2
Word recognition accuracy on the ICDAR 2003 & 2011 and SVT testing datasets.

Methods
ICDAR
03 (Full)

ICDAR
03 (50)

ICDAR
11 (Full)

ICDAR
11 (50) SVT

Text Segmentation Techniques
MRF[3] 0.67 0.69 – – –
IR[5] 0.69 0.77 – – –
NESP[4] 0.66 – 0.73 – –

Character Level Recognition Techniques
PLEX[13] 0.62 0.76 – – 0.57
HOGCRF[12] – 0.82 – – 0.73
PBS (49 classes)[14] 0.79 0.87 0.83 0.87 –
PhotoOCR[10] – – – – 0.90
CNN[11] 0.84 0.90 – – 0.70
Strokelets[15] 0.80 0.88 – – 0.76
HMM[9] 0.89 0.93 – – 0.74
DCNN[16] 0.92 0.96 – – 0.86

Word Level Recognition Techniques
DWT[17] – 0.90 – – 0.77
AE[18] – – – – 0.87
WWDCNN[19] 0.99 0.99 – – 0.95
Proposed 32 0.84 0.93 0.81 0.90 0.85
Proposed 64 0.85 0.93 0.83 0.90 0.88
Proposed 32+64 0.87 0.94 0.85 0.92 0.89
Proposed 32+64 with partial
augmented data by [31]

0.89 0.95 0.87 0.93 0.91

Table 3
Word recognition accuracy on the ICDAR 13 testing dataset.

Methods
ICDAR 13
(Full)

ICDAR 13 (No
Lexicon)

WWDCNN [19] – 0.91
PhotoOCR [10] – 0.83
NESP [4] – 0.64
PicRead [2] – 0.58
Baseline (ABBYY) – 0.45
Proposed 32+64 0.85 0.70
Proposed 32+64 with partial augmented
data by [31]

0.90 0.76

Table 4
Recognition Accuracies using different approaches.

Methods Dense SIFT & RNN HOG & HMM HOG & RNN

ICDAR 03(Full) 0.73 0.67 0.89
ICDAR 11(Full) 0.72 0.58 0.87
ICDAR 13(Full) 0.75 0.68 0.90

Fig. 8. Word recognition accuracy of our proposed method on ICDAR 03, ICDAR 11
and ICDAR 13 datasets with different lexicon sizes.

Compared with state-of-the-art techniques, our proposed method
is able to recognize the whole word images without segmentation. It
works by integrating three key novel components. First, it converts
a word image into sequential feature vectors and requires no char-
acter-level segmentation and recognition. Second, the RNN is intro-
duced and exploited to classify the sequential column feature vectors
into word accurately. Third, the proposed model combines two sets
of sequential features to produce better results. Experiments on sev-
eral public datasets show that the proposed technique obtains supe-
rior word recognition accuracy. In addition, the proposed technique is
trained and tested over several publicly available datasets which could
form a good baseline for future benchmarking of other new scene text
recognition techniques.

The proposed technique fails typically when texts in scenes are se-
verely curved or suffer from severe perspective distortion as illustrated
in Fig. 9. Under such circumstance, each word image as cropped by
a perfect rectangle box often includes a large non-text region which
introduces a certain amount of noise into the converted sequential
feature. The performance of the proposed technique can therefore be
improved greatly if a more accurate bounding box can be produced
where non-text background can be identified and excluded from the
feature extraction. We will look into this issue in our future study.
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Fig. 9. Examples of word images that fail to be recognized by our method. The recognition results of these images by our proposed method are: a) I, b) SWTW, c) MEAW, d) BMA-
MAY, e) TWA, f) PUIBEOR, g) MT, h) S, i) Xff9, j) PASN, k) DAr. L, l) Setuy.

References

[1] A. Shahab, F. Shafait, A. Dengel, ICDAR 2011 robust reading competition chal-
lenge 2: Reading text in scene images, in: International Conference on Docu-
ment Analysis and Recognition (ICDAR), 2011, pp. 1491–1496.

[2] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. Gomez i Bigorda, S. Robles
Mestre, J. Mas, D. Fernandez Mota, J. Almazan Almazan, L.-P. de las Heras,
ICDAR 2013 robust reading competition, in: International Conference on Docu-
ment Analysis and Recognition (ICDAR), 2013, pp. 1484–1493.

[3] A. Mishra, K. Alahari, C. V. Jawahar, An MRF model for binarization of natural
scene text, in: International Conference on Document Analysis and Recognition
(ICDAR), 2011, pp. 11–16.

[4] D. Kumar, M.N. Anil Prasad, A.G. Ramakrishnan, Nesp: Nonlinear enhance-
ment and selection of plane for optimal segmentation and recognition of scene
word images, in: SPIE, 2013.

[5] Y. Zhou, J. Feild, E. Learned-Miller, R. Wang, Scene text segmentation via in-
verse rendering, in: International Conference on Document Analysis and Recog-
nition (ICDAR), 2013, pp. 457–461.

[6] G. Myers, R. Bolles, Q.-T. Luong, J. Herson, H. Aradhye, Rectification and
recognition of text in 3-d scenes, Int. J. Doc. Anal. Recognit. (IJDAR) 7 (2005)
147–158.

[7] S. Lu, B.M. Chen, C.C. Ko, Perspective rectification of document images using
fuzzy set and morphological operations, Image Vis. Comput. 23 (5) (2005)
541–553.

[8] D. Kumar, M.N.A. Prasad, A.G. Ramakrishnan, Benchmarking recognition re-
sults on camera captured word image data sets, in: Workshop on Document
Analysis and Recognition (DAR), 2012, pp. 100–107.

[9] O. Alsharif, J. Pineau, End-to-end text recognition with hybrid hmm maxout
models, International Conference on Learning Representations (ICLR).

[10] A. Bissacco, M. Cummins, Y. Netzer, H. Neven, PhotoOCR: Reading text in
uncontrolled conditions, in: International Conference on Computer Vision
(ICCV), 2013.

[11] T. Wang, D. Wu, A. Coates, A. Ng, End-to-end text recognition with convolu-
tional neural networks, in: International Conference on Pattern Recognition
(ICPR), 2012, pp. 3304–3308.

[12] A. Mishra, K. Alahari, C. Jawahar, Top-down and bottom-up cues for scene text
recognition, in: Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 2687–2694.

[13] K. Wang, B. Babenko, S. Belongie, End-to-end scene text recognition, in: Inter-
national Conference on Computer Vision (ICCV), 2011, pp. 1457–1464.

[14] C. Shi, C. Wang, B. Xiao, Y. Zhang, S. Gao, Z. Zhang, Scene text recognition
using part-based tree-structured character detection, in: Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2013, pp. 2961–2968.

[15] C. Yao, X. Bai, B. Shi, W. Liu, Strokelets: A learned multi-scale representation
for scene text recognition, in: Conference on Computer Vision and Pattern
Recognition (CVPR), 2014, pp. 4042–4049.

[16] M. Jaderberg, A. Vedaldi, A. Zisserman, Deep features for text spotting, in: Eu-
ropean Conference on Computer Vision (ECCV), 2014, pp. 512–528.

[17] V. Goel, A. Mishra, K. Alahari, C. Jawahar, Whole is greater than sum of parts:
Recognizing scene text words, in: International Conference on Document
Analysis and Recognition (ICDAR), 2013, pp. 398–402.

[18] J. Almazan, A. Gordo, A. Fornes, E. Valveny, Word spotting and recognition
with embedded attributes, IEEE Trans. Pattern Anal. Mach. Intell. (2014)
2552–2566.

[19] M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild
with convolutional neural networks, Int. J. Comput. Vis. (2015) 1–20.

[20] C. Yao, X. Bai, W. Liu, Y. Ma, Z. Tu, Detecting texts of arbitrary orientations
in natural images, in: Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 1083–1090.

[21] S. Tian, Y. Pan, C. Huang, S. Lu, K. Yu, C. Lim Tan, Text flow: A unified text
detection system in natural scene images, 2015, pp. 4651–4659.

[22] S.M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, R. Young, ICDAR 2003
robust reading competitions, in: International Conference on Document Analy-
sis and Recognition (ICDAR), 2003, pp. 682–687.

[23] B. Su, S. Lu, Accurate scene text recognition based on recurrent neural network,
in: Asian Conference on Computer Vision (ACCV), 2014.

[24] A. Graves, J. Schmidhuber., Framewise phoneme classification with bidirec-
tional lstm and other neural network architectures, in: Neural Networks (NN),
2005.

[25] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber,
A novel connectionist system for unconstrained handwriting recognition, IEEE
Trans. Pattern Anal. Mach. Intell. 31 (5) (2009) 855–868.

[26] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[27] F.A. Gers, J.A. Schmidhuber, F.A. Cummins, Learning to forget: continual pre-
diction with lstm, Neural Comput. 12 (10) (2000) 2451–2471.

[28] D. Karatzas, S. Mestre, J. Mas, F. Nourbakhsh, P. Roy, ICDAR 2011 robust
reading competition - challenge 1: Reading text in born-digital images (web and
email), in: International Conference on Document Analysis and Recognition
(ICDAR), 2011, pp. 1485–1490.

[29] J. Weinman, E. Learned-Miller, A. Hanson, Scene text recognition using simi-
larity and a lexicon with sparse belief propagation, IEEE Trans. Pattern Anal.
Mach. Intell. 31 (10) (2009) 1733–1746.

[30] A. Mishra, K. Alahari, C. V. Jawahar, Scene text recognition using higher order
language priors, in: British Machine Vision Conference (BMVC), 2012.

[31] M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Synthetic data and artifi-
cial neural networks for natural scene text recognition, arXiv preprint arXiv:
1406.2227arXiv:1406.2227.

[32] C.-Y. Lee, A. Bhardwaj, W. Di, V. Jagadeesh, R. Piramuthu, Region-based dis-
criminative feature pooling for scene text recognition, in: Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2014, pp. 4050–4057.



UN
CO

RR
EC

TE
D

PR
OO

F

10 Pattern Recognition xxx (2016) xxx-xxx

Bolan Su is currently a Research Scientist in the Institute for In-
focomm Research, A*STAR, Singapore. He received his B.Sc. de-
gree in computer science in 2008 from Fudan University, Shanghai,
China, and his Ph.D. degree in computer science in 2012 from the Na-
tional University of Singapore, Singapore. His research interests in-
clude document image analysis, medical image analysis and computer
vision.

Shijian Lu is currently a scientist in Institute for Infocomm Research
(I2R), A*STAR Singapore. His current research interests are visual

attention, mobile visual analytics, and human machine interaction. Dr
Lu is the author/co-author of up to 100 conference/journal papers and
over 10 patents. He is currently the head of the Visual Attention Lab
in I2R, the co-director of IPAL (a CNRS France-Singapore Joint lab
in Singapore), and the Adjunct Assistant Professor in SCSE, NTU. He
has won a number of international benchmarking competitions such
as DIBCO 2009, 2010, and 2013, Robust Reading Competition 2013,
Handwriting Recognition 2014, etc. As the PI, he also got awarded a
number grant and industrial projects in the areas of mobile visual ana-
lytics, scene text understanding, satellite image analytics, etc.


